Nanoparticle clusters: # An introduction to small-angle xray scattering (SAXS) #### Ben Gilbert, Earth Sciences Division Lawrence Berkeley National Lab. ### Collaborators #### Goethite nanoparticles: - Chris Kim Chapman University, CA - Nanogoethite synthesis and characterization - Guopeng Lu LBNL - Lattice Boltzmann simulation - Mike Toney SSRL - Simulated annealing #### SSRL Scientific support: John Pople Funding - LBNL LDRD & DOE BES ### Sources of Nanominerals Combustion products #### Man-made **Natural** **Biomineralization** Inorganic precipitation #### Nanoparticle Aggregation Morphologies α -FeOOH nanoparticles Chris Kim unpublished Biogenic UO₂ nanoparticles Suzuki et al., Nature 419, 134 (2002) Labrenz et al., Science 290, 1744 (2000) ### Consequences of Aggregation - Mineral Growth - Aggregation-based pathways - Transport - Bioremedation efficacy - Surface Geochemical Processes - Ligand-mediated dissolution - Detection - Induced polarization methods ### Nanoparticles in Aqueous Environments - Under what conditions do nanoparticles aggregate? - Size, solution chemistry *experiment* - Derive interparticle forces *modeling* - 2 What aggregate structures are formed? - Measure cluster size, morphology, density experiment - Simulate aggregation processes *modeling* - 3 How do aggregates travel through porous media? - Flow column experiments experiment - Simulate settling and straining effects *modeling* ### Nanoparticles in Aqueous Environments experiment • modeling - Under what conditions do nanoparticle - Size, solution chemistry - Derive interparticle forces Small-angle x-ray scattering - 2 What aggregate structures are formed? - Measure cluster size, morphology, density - Simulate aggregation processes experiment modeling - 3 How do aggregates travel through porous media? - Flow column experiments experiment - Simulate settling and straining effects modeling #### Suggested reading: Neutron, X-ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems P. Lindner & Th. Zemb (Eds.) North-Holland, Amsterdam, 1991 www.alibris.com www.zubalbooks.com # X-ray scattering basics $$q = \frac{4\pi}{\lambda} \sin \theta$$ $$q = \frac{2\pi}{d}$$ SAXS: small-angle x-ray scattering $$10^{-3} \, \text{Å}^{-1} < q_{max} < 0.1 \, \text{Å}^{-1}$$ - Scattering from electron density contrast - WAXS: wide-angle x-ray scattering $$0 < q_{max} < 5 \text{ Å}^{-1}$$ - Equivalent to conventional X-ray Diffraction (XRD) - High-energy WAXS: $$q_{max} > 20 \text{ Å}^{-1}$$ - Fourier inversion provides the real-space Pair Distribution Function #### **SAXS** = diffraction from particles oriented Fe₂O₃ and PbS nanoparticles #### **WAXS = XRD = diffraction from atoms** x-rays Redl et al., Nature 423, 968 (2003) ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY CALIPSO SEMINAR 30TH NOV 2005 #### P(q) = particle scattering #### **Dilute solutions:** $$I(q) = P(q)$$ #### S(q) = interparticle scattering # Concentrated solutions or aggregates: $$I(q) = S(q)P(q)$$ (identical particles) Scattering vs. $$q$$, not θ : $$q = \frac{4\pi}{\lambda} \sin \theta$$ $$q = \frac{2\pi}{d}$$ The particle scattering, P(q), depends on the shape of the particle $$P(q) = \int \Delta \rho^2 \frac{\sin(qr)}{qr} 4\pi r^2 dr$$ E.g., Form factor, F(q), for rods length L = 80 nm, diameter d = 4 nm Guinier region $$I(q) = P(0) \exp\left[-\frac{q^2 R_g}{3}\right]$$ The Structure Factor, S(q), given by relative arrangement of particles S(q) is related to statistical descriptions of the particle positions: the particle-particle pair correlation functions, g(r) Computationally convenient. S(q) can be calculated just like the Debye Eqn for x-ray diffraction e.g., for N particles of known position $$S(q) = 1 + \frac{1}{N} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\sin(qr_{ij})}{qr_{ij}}$$... this is a discrete sin-transform of g(r)! The Structure Factor, S(q), given by FT of the pair correlation function, g(r) $$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$ #### Definition of g(r) **1D** representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$ The Structure Factor, S(q), given by FT of the pair correlation function, g(r) $$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$ #### Definition of g(r) **1D** representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$ The Structure Factor, S(q), given by FT of the pair correlation function, g(r) $$S(q) = 1 + \frac{N}{V} \int 4\pi r^2 \left[g(r) - 1\right] \frac{\sin(qr)}{qr} dr$$ #### Definition of g(r) **1D** representation of **3D** structure Related to the **radial distribution function** (RDF) Probability of finding another particle within $r \rightarrow r + \delta r$ Analysis of SAXS data for aggregates = estimating g(r) #### I. Analytical expression for g(r) e.g. fractal aggregates $$[g(r)-1] \propto r^{D_F-3} \exp(-r/\xi)$$ e.g. hard spheres Complex coupled equations #### II. Simulate g(r) constrain n(r), P(q) Simulated SAXS #### SAXS from Porous Media Two length scales - two Porod regions #### porous grains #### **SAXS** from dried **ZnS** nanoparticles Theory: Spalla et al., *J. Appl. Cryst.* **36**, 338 (2003) ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY CALIPSO SEMINAR 30TH NOV 2005 ### SAXS from Porous Media Two length scales - two Porod regions #### porous grains # voids #### **Asymptotes give two surface areas** **Ratio of surface areas = 600** Theory: Spalla et al., *J. Appl. Cryst.* **36**, 338 (2003) #### Research plan: **SAXS** of nanoparticle dispersions interparticle interaction forces Simulations of aggregation real-space aggregate structure **SAXS** of aggregates test simulations Calculation of hydrodynamic properties Larger scale transport experiments #### Surface charge vs. pH Lumsdon & Evans, *J. Coll. Interf. Sci.* **164**, 119 (1993) SAXS of 6 nm diameter FeOOH nanoparticles at pH 5.0 vs. ionic strength Single particle scattering at **pH 5.0** and 10⁻³ M NaNO₃ Fit particle size and size distribution Structure factor at **pH 5.0** and 10⁻⁴ M NaNO₃ Fit electrostatic parameters, Z^{eff} , K^{eff} . #### Lattice Boltzmann: rrrrrr BERKELEY LAB **Currently limited to 2D!** growth of fractal crystal structures simulated SAXS patterns Fit to simulated data: ### SAXS from Fractal Aggregates #### Two length scales individual particle size, r_o largest cluster size, ξ $$[g(r)-1] \propto \frac{r^{D_F-3}}{r_o^{D_F}} \exp(-r/\xi)$$ Fractal dimension, D_F Efficiency of space filling ### SAXS can measure size & D_F ANALYTICAL APPROACH Teixeira, J. Appl. Cryst. 21, 781 (1988) CALIPSO SEMINAR 30TH NOV 2005 SAXS of 6 nm diameter FeOOH nanoparticles vs. pH Volume Fraction = 0.075 %; 10⁻² M NaNO₃ SAXS of 6 nm diameter FeOOH nanoparticles vs. pH Volume Fraction = 0.075 %; 10⁻³ M NaNO₃ ### SAXS from Fractal Aggregates #### **Numerical simulation** Reveals breakdown of fractal description at low *r* Fractal properties not well-defined for < 50 particles Lattuada et al., *J. Coll. Interf. Sci.* **268**, 106 (2003) ERNEST ORLANDO LAWRENCE BERKELEY LAB BERKELEY NATIONAL LABORATORY Monodisperse particles Sharp peaks in g(r) and S(q) Hasmy et al., *Phys. Rev. B* **48**, 9345 (1993) CALIPSO SEMINAR 30TH NOV 2005 #### Conclusions - Coulombic repulsion evident in non-aggregated suspensions of goethite nanoparticles. - Larger data set and better analysis required to parameterize effective pair potentials - Nanoparticles form aggregated clusters with fractal internal structure well below the pH_{zpc} - Morphology & short-range structure uncertain - Cluster size and density dependent on solution condition, as expected - What determines maximum cluster size? #### Long term goal: Lattice Boltzmann simulations interparticle interaction forces hydrodynamic behavior #### Alternative: Simulated annealing no physical description seek agreement with SAXS data #### Simulated annealing: DAMMIN code optimized for macromolecules porous structures possible in principle pH 4.99 pH 5.45 pH 6.30 Svergun, *Biophysical J.* 76, 2879 (1999) #### Linear aggregates? **TEM** observations and **MD** simulation highlight role of *anisotropic structure* Penn & Banfield Am. Mineral. 83, 1077 (1998) Rustad & Felmy *Geochim. Cosmochim. Acta,* **69**, 1405 (2005) # FeOOH nanoparticles Guyodo et al., Geophys. Res. Lett. 30, 1512 (2003) ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY CALIPSO SEMINAR 30TH NOV 2005 Linear aggregates? Monte Carlo simulations (2D) highlight role of *repulsive interactions* #### High energy aggregate #### Low energy aggregate Lebovka et al., *EuroPhys. Lett.* **41**, 19 (1998) #### Repulsive interactions likely limit maximum cluster size Particle-cluster and cluster-cluster aggregation halts when: #### Repulsive interactions likely limit maximum cluster size Particle-cluster and cluster-cluster aggregation halts when # Partial Disaggregation of Goethite Clusters #### Almost reversible process ... # Partial Disaggregation of Goethite Clusters Almost reversible process ... # Partial Disaggregation of Goethite Clusters #### Surface charge drive partial disaggregation? Finite potential well upon aggregation Test short-range interaction potentials in simulation